Drought in the Pacific Northwest: 1920-2013

Mu Xiao
Advised by Dennis Lettenmaier

Department of Geography
University of California, Los Angeles
Study domain

- The Pacific Northwest (PNW): Columbia River Basin, and coastal drainages
Study domain

- The Pacific Northwest (PNW): Columbia River Basin, and coastal drainages
 - Usually abundant water
 - Several severe droughts occurred (e.g. 1977 & 2001)
 - 2000-01 and 2004-05 drought in WA caused a more than 900 million combined loss (Shukla et al 2011)

Stuart Tomlinson, “*Oregon weather watch: Widespread drought could ease with wet spring*”, The Oregonian, Jan 31 2014
Research questions

• What are the most severe (soil moisture) droughts inside the study domain during last nine decades?

• How do these droughts influence the region’s agriculture, hydropower, water supply and recreation?
Research questions

• What are the most severe (soil moisture) droughts inside the study domain during last nine decades?

• How do these droughts influence the region’s agriculture, hydropower, water supply and recreation?
Approach

- **Gridded station observation**
 - Interpolated to 1/16°

- **Run hydrological model**
 - VIC (Liang et al, 1994)

- **Generate outputs**
 - Data source: NOAA and Environment Canada (Prep, Tmax, Tmin)

- **Do SAD (Andreadis et al 2005) analysis**
Drought monitor for the PNW

The dataset is taken from UW drought Monitor:

http://hydro.washington.edu/forecast/monitor_west/
Approach

- Run VIC at a **daily** time step with the grid-based forcing data for **1920-2013**
Approach

- Report the soil moisture as **percentiles** relative to historical simulation
 - Reduce the model bias
 - Generate uniformly distributed field

Cumulative Probability

Built by all results on May 1\(^{st}\) during historical time
Approach

• Severity-Area-Duration (SAD) analysis
 – Examine all these 3 factors
 – Drought can cluster and split
 – Severity: “1- average percentiles”
Approach

• Severity-Area-Duration (SAD) analysis
 – Examine all these 3 factors
 – Drought can cluster and split
 – Severity: “1- average percentiles”
 – Monthly soil moisture percentile below a threshold (0.2)
 – Duration is a moving-window specified (3, 6, 12, 24, 36 and 48-month)
 – Area is larger than threshold (640 grid cells)
SAD results for the PNW 1920-2013
SAD results for the PNW 1920-2013
SAD results for the PNW 1920-2013

The most severe droughts are: early 1930s, 1930s, 1977 and early 2000s
1977 Drought Example
Research questions

• What are the most severe (soil moisture) droughts inside the study domain during last nine decades?

• How do these droughts influence the region’s agriculture, hydropower, water supply and recreation?
Water supply

The four rivers for Portland, Seattle, Tacoma and Everett
Water supply

The four rivers for Portland, Seattle, Tacoma and Everett
Recreation (skiing)

- Snow depth is most important index
 - Common minimum: 30 cm (Scott et al 2007; Steiger 2013)

- Snow depth for Stevens pass (WA), Mt Bachelor (OR) and Sun Valley (ID)
 - Count the number of days that below that threshold in each water year
Recreation (skiing)
Dryland Agriculture (wheat)

• The main counties of wheat-product (data source: USDA nation agricultural statistics service)
 – WHEAT production long-term annual average greater than 3 million BU

http://quickstats.nass.usda.gov/#1E023F7F-3547-35F1-AD5F-91DCE97E9413
Dryland Agriculture (wheat)

• The main counties of wheat-product (data source: USDA nation agricultural statistics service)

• Use Mar-Aug average soil moisture as index
 – This is the time period for wheat growing (Usual Planting and Harvesting Dates; http://swat.tamu.edu/media/90113/crops-typicalplanting-harvestingdates-by-states.pdf)
Dryland Agriculture (wheat)
Conclusions

- The most severe drought disasters is 1930, middle 1930s, 1977 and early 2000s of last nine decades according to SAD analysis.
- The 1977 one has the worst effect on the sections we look at (water supply, agriculture and etc).
- Most of the time, these droughts has obvious influence on the region (those index are small when there is a drought).
Next step

• Implement Columbia Simulation Reservoir Model (*ColSim*) (Hamlet et al. 1999)
 – Hydropower generation and irrigated agriculture
Questions?

References: